A Variation on Uncertainty Principle and Logarithmic Uncertainty Principle for Continuous Quaternion Wavelet Transforms
نویسندگان
چکیده
منابع مشابه
An uncertainty principle for quaternion Fourier transform
We review the quaternionic Fourier transform (QFT). Using the properties of the QFT we establish an uncertainty principle for the right-sided QFT. This uncertainty principle prescribes a lower bound on the product of the effective widths of quaternion-valued signals in the spatial and frequency domains. It is shown that only a Gaussian quaternion signal minimizes the uncertainty.
متن کاملThe Uncertainty Principle for Fourier Transforms on the Real Line
This paper will explore the heuristic principle that a function on the line and its Fourier transform cannot both be concentrated on small sets. We begin with the basic properties of the Fourier transform and show that a function and its Fourier transform cannot both have compact support. From there we prove the Fourier inversion theorem and use this to prove the classical uncertainty principle...
متن کاملLogarithmic uncertainty principle, convolution theorem related to continuous fractional wavelet transform and its properties on a generalized Sobolev space
The continuous fractional wavelet transform (CFrWT) is a nontrivial generalization of the classical wavelet transform (WT) in the fractional Fourier transform (FrFT) domain. Firstly, the RiemannLebesgue lemma for the FrFT is derived, and secondly, the CFrWT in terms of the FrFT is introduced. Based on the CFrWT, a different proof of the inner product relation and the inversion formula of the CF...
متن کاملOn Generalized Uncertainty Principle
We study generalized uncertainty principle through the basic concepts of limit and Fourier transformation to analyze the quantum theory of gravity or string theory from the perspective of a complex function. Motivated from the noncommutative nature of string theory, we have proposed a UV/IR mixing dependent function δ̃(∆x,∆k, ǫ). We arrived at the string uncertainty principle from the analyticit...
متن کاملA new uncertainty principle
By examining two counterexamples to the existing theory, it is shown, with mathematical rigor, that as far as scattered particles are concerned the true distribution function is in principle not determinable (indeterminacy principle or uncertainty principle) while the average distribution function over each predetermined finite velocity solid-angle element can be calculated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2017
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2017/3795120